Все тепловые двигатели, в число которых входят и ракетные, превращают внутреннюю энергию сжигаемого топлива в механическую. Топливо при этом может иметь весьма разнообразные формы и параметры. Двигатели внутреннего сгорания (ДВС) не приемлют ни дрова, ни уголь, им подавай нечто жидкое или газообразное. Но бывают вещества совсем необычные.

На каком топливе летают космические ракеты?

Фото: на чём летают ракеты?

Ядовитые смеси

Каким бы ни было топливо, его горение по сути есть процесс окисления, который возможен только при наличии кислорода в чистом виде либо в каком-либо соединении (например, азотная кислота, перекись водорода и т.п.). Окружающая нас земная атмосфера содержит 21% кислорода, и этого вполне достаточно для горения, то есть для работы тепловых машин. Другое дело, когда тепловой двигатель установлен на объекте, выходящем за пределы земной атмосферы. Там он работать не сможет — ему просто «нечем дышать». Поэтому космические, как и боевые баллистические ракеты, приводимые в движение ракетными двигателями, должны нести комплексное топливо, состоящее из горючего и окислителя, причём последнего должно быть, как правило, больше (приблизительно раза в полтора).
Горючее для ракетных двигателей должно отвечать целому ряду требований. Прежде всего учитывается его энергоёмкость, определяемая удельной теплотой сгорания, а также плотность (чем она меньше, тем больше полезного груза сможет поднять ракета). Поскольку старт ракет и начальный участок их траектории проходит в атмосфере, то к компонентам ракетного топлива предъявляются и экологические требования.
В качестве горючего чаще всего используются керосин, метиловый и этиловый спирты и водород. Последний имеет самую высокую удельную теплоту сгорания и самую низкую плотность. Однако реально водород может быть использован только в сжиженном состоянии, для достижения которого газ нужно охладить до -259 °С. В противном случае (использования в газообразном состоянии) потребовались бы баки непомерного размера либо прочные (и соответственно тяжёлые) баки, рассчитанные на высокое давление сжатого газа.
Последним достижением советских химиков стала разработка ракетного горючего гептила и окислителя амила. Надо отметить, что оба эти вещества способны нанести серьёзный урон как людям, так и любым природным объектам. Любое соприкосновение с гептилом пагубно влияет практически на все системы человеческого организма. Поэтому хранение его затруднено, а личный состав, обслуживающий снаряжённые гептилом ракеты, может работать только в защитных комбинезонах и противогазах. Учитывая это, несмотря на высокую энергоёмкость, топливо «гептил/амил» используется только в боевых баллистических ракетах.

Поиск продолжается

Учёные и инженеры многих стран продолжают поиск альтернативных компонентов ракетного топлива. В поле их зрения попал природный газ. Почти не уступая керосину и превосходя спирты по энергоёмкости, этот газ имеет невысокую плотность. Однако, возможно, главным его преимуществом является доступность и дешевизна в связи с гигантскими масштабами разведанных природных запасов и развитием газодобычи во всём мире.
Основным компонентом природных газов является метан. Этот простейший из углеводородов, имеющий несложную формулу CH4, известен науке уже давно. Ещё в 1776 году итальянский физик Алессандро Вольта обнаружил метан в болотах озера Лаго-Маджоре. В ходе исследований он показал возможность поджигать газ с помощью электрической искры.
На Земле метана много: из него состоят рудничные газы, он составляет до 90% попутных нефтяных газов. По утверждению астрофизиков, метан в значительных концентрациях присутствует в атмосферах планет-гигантов Солнечной системы. Так, предположительно, на поверхности Титана в условиях низких температур (-180 °С) расположены целые озёра жидкой метано-этановой смеси. Правда, дотянуться до этих сокровищ человечеству в обозримой перспективе вряд ли удастся.
Впервые о метане как о потенциальном ракетном горючем упоминалось 60 лет назад в книге Валентина Глушко и Георгия Лангемака, однако применение метана (как и водорода) сдержи — « валось в связи с приоритетом в ж те годы разработок боевых paкет на основе топлива, способного длительно сохранять свои качества после заполнения ракетных баков. Но начиная с 1981 года к перспективным разработкам плотно подключилась ведущая двигателестроитель-ная фирма НПО «Энергомаш» им. Глушко. К настоящему времени здесь проведены широкие теоретические и экспериментальные исследования по созданию жидкостных ракетных двигателей (ЖРД) на топливной паре «метан-кислород». Оба компонента используются в сжиженном состоянии, для чего метан охлаждается до -165 °С. Результаты исследований подтвердили целесообразность разработки на этой топливной паре ЖРД практически любой мощности. XXI век становится веком информации, а это потребует вывода в космос на различные орбиты сотен спутников Земли и иных космических объектов. Станет необходимым использование высоконадёжных и экономичных ракет большой грузоподъёмности, не наносящих ущерба экологии нашей планеты. Какие преференции обещает метан? Замена жидким метаном керосина обеспечивает более высокие энергетические характеристики ракет (даёт увеличение на 20-30% массы полезного груза при той же стартовой массе ракеты);
— высокую экологическую чистоту как продуктов сгорания, так и компонентов топлива, попадающих на землю при аварийных проливах;
— более низкую (приблизительно в три раза) стоимость заправки ракеты.
Кроме того, близость температурных диапазонов жидких фаз кислорода и метана открывает дорогу для новых конструктивных решений, способствующих снижению веса ракеты.
Из-за того что плотность сжиженного метана меньше на 20%, чем у керосина, в тех же топливных баках ракеты размещается меньшая масса горючего. Однако это с избытком компенсируется повышенной удельной энергоёмкостью метана.

Журнал: Запретная история №2(95), январь 2020 года
Рубрика: История космонавтики
Автор: Константин Ришес

Метки: СССР, энергия, космос, двигатель, ракета, топливо, Запретная история, тяга



Telegram-канал Багира Гуру


Исторический сайт Багира Гуру; 2010 —